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Explicit-Implicit Schemes for the Numerical Solution 
of Nonlinear Hyperbolic Systems 

By G. R. McGuire and J. LI. Morris 

Abstract. A class of methods, comprising combinations of explicit and implicit methods, 

for solving systems of conservation laws in one space dimension is developed. The ex- 

plicit methods of McGuire and Morris [5J are combined with the implicit methods of 

McGuire and Morris 111 in a manner similar to that for creating Hopscotch methods 

(Gourlay (131). The stability properties of these explicit-implicit methods is investigat- 

ed and the results of some numerical experiments are presented. Extensions of these 

methods to systems of conservation laws in two space dimensions are also briefly dis- 

cussed. 

1. Introduction. We will consider finite-difference methods for solving systems of 
conservation laws of the form 
(1.1) au/at + af(u)Iax = 0 
defined on the region G {O < x < X} x {t > O} where u and f are n-vectors. Equa- 
tion (1.1) is assumed to be hyperbolic in G, which means that the Jacobian A(u) = 
af(u)/au has everywhere real eigenvalues and a complete set of linearly independent ei- 
genvectors. The eigenvalues of A(u) are further assumed to be positive, so that system 
(1.1) subject to initial conditions 

(1.2) u(x, 0) = f(x) 
and boundary conditions 

(1.3) u(0,t)=g(t) 

is well posed. A full account of the theoretical aspects of this problem may be found 
in Jeffrey and Tanuiti [1] (see also Oleinik [21). 

In the usual manner, we assume a uniform discretization of G by a mesh parallel 
to the coordinate axes with a mesh spacing h in the x coordinate and k in the time di- 
rection. We denote by (ih, mk) the nodal points of the mesh where, without loss of 
generality, we assume X = Nh so that i ranges over the integers 0, 1, 2, * * , N and m 
takes integer values 0, 1, 2, - - -. 

We denote by uT =u(ih, mk) the solution of (1.1) at (ih, mk) and by wr- 
w(ih, mk) an approximation to uT. We assume the mesh ratio p (= k/h) is constant. 

There is, in existence, a large number of methods for solving system (1.1). Most 
of the difference methods proposed to date have been second-order accurate explicit 
methods (see Lax and Wendroff [6], Richtmyer [31, Gourlay and Morris [4], Burstein 
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and Rubin [24], McGuire and Morris [5]), although the lesser accurate methods of Lax 

[71 and Hopscotch-Lax [171 are also of interest. A three-level difference scheme which 
is particularly useful for solving systems of the form (1.1) over long time intervals is the 
leap-frog method 

(1.4) W1 =W 1 P[fi+1 -fi]- 
A full discussion of many of these methods may be found in Richtmyer and Morton 
[81; see also the comprehensive bibliography contained in Roache [25]. 

An important feature of explicit difference methods for hyperbolic equations is 
that they must satisfy the classical Courant-Friedrichs-Lewy (CFL) convergence condi- 
tion (see [9]). This condition imposes a restriction on the mesh ratio p. Hence, for a 
given h, the time step k is restricted in size. For nonlinear systems, in order to imple- 
ment the CFL condition, it is necessary to consider the linearized versions, 

(1.5) au/at + A 3u/ax = 0, 

of (1.1) where A is a constant matrix. Since consistency is a prerequisite of the differ- 
ence methods for the solution of (1.1), stability and convergence are equivalent for lin- 

ear problens by virtue of Lax's equivalence theorem (see Richtmyer and Morton [8]). 
This, of course, only applies to linear problems and, in any case, stability is not defined 
in the nonlinear case. Stability is analysed for difference schemes applied to (1.5) using 
the usual Fourier analysis (see [81). This analysis requires an investigation of the ampli- 
fication matrix of the difference approximation. The Von Neumann necessary condi- 
tion requires that the eigenvalues of this matrix be bounded by one in modulus. All 
the schemes considered have amplification matrices which are rational functions of A 
and, hence, since (1.5) is assumed hyperbolic, these amplification matrices are uniform- 
ly diagonalizable which means that the Von Neumann condition is sufficient as well as 
necessary for stability (see [81). 

An additional important property required of difference methods for nonlinear 
hyperbolic systems is that their linearized versions (the methods applied to (1.5)) be 
dissipative in the sense of Kreiss; namely, dissipative of order 2r (r is a positive integer) 
means that there exists a 6 > 0 such that 

(1.6) IlQx)I? 1 - 6 1o12r Vial < 1T 

where 1 is an eigenvalue of the amplification matrix and al is the Fourier variable. 
In considering ways of alleviating stability restrictions associated with explicit 

methods, we are naturally drawn to considering implicit methods and their (usually) 
larger ranges of stability for the approximate solution of (1.1). Such implicit methods 
have received less attention than explicit methods; see, however, Gary [10], Gourlay 
and Morris [4], Abarbanel and Zwas [12], McGuire and Morris [11]. The advantages of 

an increased stability range for the implicit schemes are unfortunately offset by two 
important disadvantages. First, the implicit methods require either that a system of 

nonlinear equations be solved or an iterative procedure be applied at each time step. 
Second, with the exception of the method described in [11], the implicit methods are 
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nondissipative and hence of dubious value for nonlinear hyperbolic systems in which 
discontinuities can occur. 

Our aim in this paper is to combine explicit and implicit methods in an endeavour 
to produce schemes which possess properties approaching the best possible of the con- 
stituent methods. Namely, the resulting scheme will preserve the dissipation and ease 
of solution associated with the explicit methods whilst retaining an optimal stability by 
virtue of the implicit methods. 

Such an approach has already been successfully implemented for parabolic differ- 
ential equations in a series of papers on the hopscotch methods; see Scala and Gordon 
[16], Gourlay [13], Gourlay and McGuire [14]. In these papers, an explicit method and 
its precise implicit version were combined so that the complete procedure could be lik- 
ened to an ADI method. Hopscotch methods have also been derived for the system 
(1.1) in Gourlay and Morris [17] and Gourlay, McGuire and Morris [18]. In the pres- 
ent paper, however, we will adopt a slightly different approach in that classes of ex- 
plicit and implicit second-order accurate methods are combined to give workable algo- 
rithms satisfying our main requirements. 

The method of combination and the resulting methods are described in the next 
section. In Section 3, a stability analysis of the explicit-implicit methods is given. Sec- 
tion 4 contains a description of numerical experiments carried out on the novel meth- 
ods. In the final section, a brief account of extensions of the methods to two space 
variables is given. 

2. Second-Order Accurate Explicit-Implicit Schemes. In this section, we combine 
two classes of second-order accurate explicit and implicit methods for solving system 
(1.1) to give a class of explicit-implicit methods. We consider the class of explicit 

schemes introduced in McGuire and Morris [5], namely 

(2.1) wm +a = (w+1/2 + W 2 //2 - ap(fim+/2 -fi_/2) 

(2.2) w+i = w -P [(1f --) 

where a = 0 and *m+a is a first-order approximation to UT+a 
It was shown in [5] that the scheme (2.1), (2.2) is second-order accurate and sta- 

ble in the linearized sense if 

(2.3) pIXI? 1 

where IXI is the maximum modulus eigenvalue of A. Further, it was shown that the 
class of schemes was dissipative of order 4 in the linearized sense, provided 

(2.4) 0 <pIXI<lI 

for all eigenvalues X otf A. 
The class of implicit methods, which we shall consider, are the extensions of (2.1), 

(2.2) given in McGuire and Morris [11]. Namely, (2.1) is taken with 
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Wm +i1 =w m-P2[(l> + d(a- 1))(fm+ 1 -fiTi) 2 
(2.5) * 

+ (1/2- ad)(fim++ 1 - fim + 1 ) + 2d(f m++a 
- f T +a)j. 

In [11], (2.1) and (2.5) are shown to be second-order accurate and stable provided 

(2.6) ad > O and p IXA I 1/a, 
where IXI is the maximum modulus eigenvalue of A. The case ad = 0 gives the Crank- 
Nicolson scheme and hence unconditional stability. The class of methods was also 
shown to be dissipative of order 4, provided 

(2.7) ad>O, O<pIXI<1/V2a 

for all eigenvalues X of A. ad = 1/2 gives the class of explicit methods (2.1), (2.2). 
Consider the following combination of these two classes of method: 

(2.8) Use (2.1), (2.2) at grid points with m + i odd 
and then use (2.1), (2.5) at the other grid points. 

Method (2.8) is called the explicit-implicit class of methods or, simply, the expli- 
cit-implicit method. It is easily seen that the method is computationally explicit; for 
application of (2.1), (2.2) at odd points of time level m (grid points with m + i odd) 
then makes the application of the implicit method (2.1), (2.5) at this time level an ex- 
plicit process. Also, (2.8) is not a Hopscotch method since (2.1), (2.5) is not the im- 
plicit version of (2.1), (2.2). 

Diagramatically, the explicit method uses the points depicted thus 

(i, m + 1) 

(i 1, m) (i, m) (i + 1, m) 

whereas the implicit method uses the following points 

(i -1, m + 1) (i, m + 1) (i + 1, m + 1) 

Th c 1, m) ti, m) (i + 1, m) 

The combined method uses the points in the following way 
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p 

where X denotes the use of the explicit method, and O denotes the use of the implicit 
method. 

Finally, it is obvious that the explicit-implicit scheme (2.8) is second-order accu- 
rate. For, both the explicit and implicit schemes have local truncation errors 0(k3) 
and, hence, so does the combination (2.8). 

3. Stability Analysis of the Explicit-Implicit Schemes. In this section, we consider 
the linearized version of (2.8) and analyse the stability properties of the method. Lin- 
earizing Eqs. (2.1), (2.2) and eliminating the intermediate values, we obtain 

(3.1 2W(i+l W Jl) 2 (wI- -2wr +w wT). 

Similarly, linearizing (2.1), (2.5) and eliminating starred values gives 

wm+1 = _ (1/2-ad)(w_1 w(m1+21)i_4(?+ ad)(wm 1 -w wT) 

(3.2) 
+adp2A2(wlm - 2wr + wri). 

Now consider the application of method (2.8) at a point with m + i odd. Then 

the points (i + 1, m) and (i - 1, m) are even points and it is easily shown, by applying 
(3.1) with m = m - 1, i = i + 1 and i i - 1, that 

Wlm lWim V [-p2A2 ](wlm+ll wT-l1) - LA (Wlm+-' W - I2T- + wT_21) 

(3.3) 2A2 

+ p A ( 1 - -2l1- 

and 

Wm1 +w7im = [I-p2A2](wm-1 +wm-1) 

.4) ~~~~~+ P2A (WIm+-' + 2wTm-1 + wTm1- (3.4) 
+ 

2 
rn-i 

Irn-i 

_ PA(wm - rWn-1i). 

Now (i, m) is an odd point and so (3.2) gives wT there with m = m - 1. Multiplying 
this equation by [I - p2A2 ], we then obtain 
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[I-p2 A2Iwm = [I-p2A2Iwm-l -PA [I-p2A2I(? + ad)(wml1 -wrn-1) 

(3.5) + adp2A2 [I-p2A 2](wm-1 + wrm1) 

- 2adp2A2[I- p2A2Iwrm-1 

Now, Eqs. (3.3) and (3.4) can be used to eliminate wm+1l, wlvrl1 from (3.5). The re- 
sulting expression then gives [I- p2A2 ] w as a function of only wr-i, 1w m - 1 
Finally, (m + 1, i) is an even point whose values are given by (3.1). Thus 

(36) W+1 [_2A 2IWm 
_LA (w sm+ -wl_) + 2(W l+ W 

Eliminating [I - p2A2 ] w , using (3.5) with w mt1 eliminated, gives 

Wm +1 - [I-3 p2A 2-3 adp2A2 + adp4A4] W-1 

- PA _ 
P-2 - ad) (wlm l - wTm l) 

+ P2A2 (- +ad) (Wm I + W p)+3A3 (8+ Aad) (wm1 Wm"1) 

--4: ((2-+ ad)I + 2adp2A2) (wm- + wT'-1). 

The scheme (3.7) uses only values at the even points 

!n + 1 rn rn-1 rn-i 
I ' i?i 1, wi?2 

Hence, the original explicit-implicit scheme, when linearized, is equivalent to an applica- 
tion of (3.7) at points with (m + i) odd, with the values for (m + i) even filled in us- 
ing the implicit scheme (3.2). Hence, basically the stability of (3.8) is determined by 
the stability of Eq. (3.7). The advantage of the explicit-implicit scheme in the form 
(3.8) is that the procedure is self-starting after print-outs whereas Eq. (3.7) used on 
its own (only for linear equations), being a three-level scheme, requires a special start- 
ing procedure. 

The usual Fourier analysis applied to (3.7) gives an amplification matrix all of 
whose eigenvalues must be less than unity in modulus before (3.7) can be stable. The 
amplification matrix of (3.7) is a matrix whose terms are polynomials in A. This means 
that, since A has linearly independent eigenvectors, the amplification matrix is uniform- 
ly diagonalizable and so Von Neumann's condition is sufficient as well as necessary for 
stability. 

The eigenvalues p of the amplification matrix are given by replacing A in Eq. 
(3.7) by one of its eigenvalues X (say), wr +1 by p2, w '-1 by 1, w7mi - wli1 by 
26Ip sin a, wm1 + w 1 by 2p cos a, wrmn-i rw-1 by 2v7/ sin 2ot, and wm+-1 + 
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w 1 by 2 cos 2a. This then gives 

p2 - 2p2a) 2 psn a - p2X2 + ad) 2p cos a 

(3.8) - ( 
3 

-3p2X2 - 3 adp2X2 + adp4X4) - P3X3 (I+ 3i) 2J1 sin 2a 

+P7 (( + ad) + 2adp2X2) 2cos2a = 0, 

where a is the variable in the Fourier space corresponding to ih. Defining 

A(pX, a) = -2p2X2 + ad) cos a, 

B(pX' a-) = (PX - P~ 2 2- d) 2 sin ce, 

(3.9) C(p?, a) = 3( 2p22 - 3adp2x2 + adp4X4) 

+ P 4 2 + ad) + 2adp2X2) 2 cos 2a, 

D(pX, a) = - 2p3X3 (8 + 3ad) sin 2a, 

we find that Eq. (3.8) becomes 

(3.10) p2 + (A + =jB)p + (C + D) = 0. 

To prove that the explicit-implicit scheme is stable, we require to show that the 
roots of (3.10) lie inside or on the unit circle. It is no easy problem to find conditions 
on pX such that this is true. The first observation is that the scheme (3.7) is an explic- 
it three-level scheme and, as such, is subject to the CFL condition for convergence. It 
is easy to see that the condition, in this case, requires 

(3.11) pI'xI1. 

Further, since the scheme is consistent and the linearized system of differential equa- 
tions (1.1) is well posed, the Lax-Richtmyer equivalence theorem gives (3.11) as a nec- 
essary condition for stability of (3.7). Hence, by the equivalence of stability and the 
Von Neumann condition for this scheme, the roots of (3.10) will have modulus greater 
than one for some a when p IXI is taken greater than one. Thus, we need only consider 
values of pX in [- 1, 1]. 

Replacing pX by -pX in (3.10) gives 

(3.12) p2 + (A - f B)p + (C--1D)-0. 

If p is a root of (3.10), then p is a root of (3.12) and, since lpl = -Ip, we need only 
consider the moduli of the roots of Eq. (3.10) for pX in the interval [0, 1]. 

In a similar way, we can show that p(- a) satisfies (3.12). Hence 

(3.13) p(ot) = p(-a) for any oa. 
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Also, since 
(3.14) A(pX, 7r - a) = -A(pX, a), B(pX, 7r - a) = B(pX, ax), 

C(pX, 7r - ax) = C(pX, a), D(pX, 7r - ox) = -D(pX, ot), 
we have that, if p(ax) satisfies (3.10), then 

p2(7r - a) + (-A + -lB)p(7r - a) + C - D = 0 
and so 

(--(7r - at))2 + (A + N/-B)(-P(7r - a)) + C + -s-_D = 

Hence, p(ax) and -p(r - ax) are the roots of (3.10). Thus, since these roots have the 
same modulus, it is only necessary for us to consider the roots for ax E [-7r/2, 7r/2], and, 
by (3.13), it is enough to consider both roots for ax E [0, 7r/2] in order to determine the 
maximum modulus for the roots of (3.10). 

A full investigation as to which conditions on pX and ad give stability, is extreme- 
ly complicated. However, a partial analysis can be carried out in the following manner. 
By putting pX = 1 in (3.10), an investigation as to which values of ad give an optimal- 
ly stable method can be performed. 

In this case, 

A(pX, a) = A(1, a)EA(oa) = -(1 + 2ad) cos a, 

B(oa) = (3/2 + ad)sin ae, 
(3.16) 

C(oa) = - (1 - ad/2) + 1/2( + 3ad) cos 2ac, 

D(oa) = - (1/4 + 3ad/2)sin 2ac. 

The following theorem due to Miller [19] will be used. 
THEOREM 3.1. Let f be a polynomial of degree n and f' its derivative with re- 

spect to p, the dependent variable. Also, let 
(3.17) f1( ) (f (*)f(W )-f(O)f - w)/t 
be the reduced polynomial where 
(3.18) f *()- 2.T(1/t). 
Then f is a Von Neumann polynomial (all its roots lie on, or inside, the unit circle) iff 

either 
If *(O)I> If(o)I 

and f1 is a Von Neumann polynomial 
or 

f, 0 and f' is a Von Neumann polynomial. 
When 

f(p) p2 + (A + ?\/B)p + (C + ?V D), 
it is easily shown that 

f*(p)-(C-V7iD)p2 + (A ---IB)p + 1, 

(3.19) f*(O)= 1, f(0)=C?+1D, 

fi (p) = (1 - C2 - D2) p + (A - AC - BD) + 1 (B - AD + BC). 
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LEMMA 3.2. With A, B, C, D given by (3.16), 

A - AC - BD = -c Cos ag(c, ct), 

(3.20) B - AD + BC = c sin og(c, a), 

1 - C2 -D2 = cg(c, t), 

where g(c, oa) = (2 - c) + (2 - 3c) cos2ca and c = 1/2 - ad. 
Proof. With c = 1/2 - ad, Eq. (3.16) becomes 

A(oa) = 2(c - 1) cos a, B(oa) = (2 - c) sin a, 

C(a) = -c/2 + 1/2(2 - 3c) cos 2a, D(a) = - 1/2(2 - 3c) sin 2ac. 
Thus 

1 - C2 - D2 = (c/2)(6 - 5c + (2 - 3c) cos 2ac) = c((2 - c) + (2 - 3c) cos2ca), 

A - AC - BD = 2(c - 1) cos a + c(c - 1) cos a - (2 - 3c)(c - 1) cos a cos 2a 

+ 1/2(2 - c)(2 - 3c) sin ox sin 2ac = -c cos ca{(2 - c) + (2 - 3c) cos2ca} 
and 

B -AD +BC = (2 - c)sinca + (c - 1)(2 - 3c) cos asin 2a 

- + (- (c/2) (2 - c) sin a + 1/2(2 - c)(2 - 3c) sin a cos 2c) 

= c sin ca{(2 - c) + (2 - 3c) cos2ca, 

which proves the lemma. 
LEMMA 3.3. With A, B, C, D given by (3.16), 

Proof. fi = 0 Va iff c = 0. 

f1 = 0 Vae iff 1 - C2 -D2 = 0, 

A -AC-BD = 0, 

B -AD +BC= 0, Va iff c =0, 
by Lemma 3.2. 

LEMMA 3.4. With A, B, C, D given by (3.16), 

If*(O)I > If(O)I V\c iff 0 < c <1. 

Proof. 

If *(0)I> If(O)I V(X, 

iff 1 - C2 -D2 > O Va by (3.19), 

iff cg(c, oe) > 0 Va by Lemma 3.2. 

Now when c < 0, g(c, o) > 0 Va and so cg(c, oa) < 0 Voa. Hence, cg(c, o) > 0 Vae iff 
c>0 andg(c, o)> 0OVa. Now, 
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g(c, af) = 2(1 + cos2af) - c(1 + 3 COS2a) > 0 V 

iffc < 2(1 + 
COS2c) Vc5 

1 + 3 cos2c 

iff c< min 2(1 +x)- 
Xe[O,11 1 + 3x 

Hence the lemma is proved. 

The following remarks are useful. 

Remark 1. If *(O)I > If(O)I Vao O iff O < c 1. 

The proof is almost that of the lemma except that Vao is replaced by Vae # 0 

and we have 

g(c, o) >O V a *O, 

iff c <2(1 cos) V , 
1 + 3 cos2a 

iff c S 1, on taking limits as a >O0. 

Remark 2. When ae = 0, f(p) has roots 1, 1 - 2c and so f(p), with ae = 0, is a 

Von Neumann polynomial iff 0 S c S 1. 
The following theorem can now be proved. 

THEOREM 3.5. The explicit-implicit scheme is stable in the linearized sense for 

p IXI = 1 iff - 1/2 S ad S 1/2. 

Proof. 

f(p) is a Von Neumann polynomial Vao, 

iff f(p), for ae e ]O, ir/2], is Von Neumann and f(p) for ae = 0 is 
Von Neumann, 

iff either If *(0) I> If(O)I and f1 is Von Neumann, 
or f1 = 0 and f' is Von Neumann for all at e ]O, ir/2] and f(p) 
for ae = 0 is Von Neumann, 

iff 0 < c S 1 and (A -AC -BD)2 + (B -AD+BC)2S1 V+ O 
(1 - C2 - D2 )2 

with c e ]0, 1], using Remark 1, 

or c = 0 and (A2 + B2)/4 S 1 for a 0 with c = 0, 
and 0 S c S 1 by Remark 2. 

Now (A - AC - BD)2 + (B - AD + BC)2 - c2g2(c, oe) by Lemma 3.2 and (1 - C2 - 

D2)2 = c2g2(c,oa) > 0 for a # 0 and c e ]0, 1]. Hence 

(A - AC - BD)2 + (B - AD + BC) =1 for a O and 0 < c 1. 

Also(I2 

(A2+B2)/4=1 whenc=0. 
Hence, the theorem is proved. 
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If it can be assumed that if the scheme is stable for p IXI = 1 then it is stable for 
all smaller time steps, namely p IXI S 1, then the nice result 

'optimal stability is achieved iff -1/2 S ad S 1/2', 

can be obtained. 
To derive this result analytically is extremely difficult. Thus, a computer search 

was made on the roots of (3.10) for a in [0, ir/2] and pX in [0, 1] and for a range of 
values of ad. The results are given in Table 3.1. 

TABLE 3.1. 

pNo = maximum value of pX in the range .1(.1)1.0, and for which the moduli of the 
roots of Eq. (3.10) for all a in the range O(fr/100)fr/2, are S 1. 

- .5 .52 
ad - .5 2 .8, .9, 1.0 2.0 3.0 > 4.0 
______ { ~to .5 to .7 

Pxo < .1 1.0 .9 .8 .6 .5 < .5 

From Table 3.1, optimal stability is only achieved (as given by Theorem 3.5) for 
ad E [- 1/2, 1/2]. The remarkable feature of these results is the fact that, just below 
ad = - .5, the range of stability is drastically reduced, while, for values of ad above .5, 
the range of stability falls off more slowly. 

A corollary to Theorem 3.5 can be proved with the aid of another theorem due 
to Miller [19], namely: 

f is a Schur polynomial (all its roots lie inside the unit circle) iff If *(0)I > 

If(0)1 and f1 is a Schur polynomial. 

COROLLARY 3.6. For the explicit scheme to be dissipative in the linearized sense, 
it is required that p IXI < 1. 

Proof. From the proof of Theorem 3.5, If *(0)I is not greater than If(0)I for c = 

0, 1 when pX = 1. Also, for 0 < c < 1, f, is not a Schur polynomial when pX = 1. 
Thus, since for a dissipative scheme f is required to be a Schur polynomial, the corol- 
lary is proved. 

4. Numerical Experiments in One Space Dimension. In this section, the results of 
some numerical experiments carried out using the explicit-implicit scheme (3.8) are pre- 
sented. In all the experiments, we used the scalar equation 
(4.1) au/at + (a/ax)(1/2u2) = 0 
in the region {0 < x S 1} x {t > 0}. The experiments were of two kinds; the first set 
consisted of problems with smooth solutions while the second set was on a problem 
with a discontinuous solution. For the smooth problems, we used the following sets of 
stability values and boundary conditions: 

(4.1aI) (a) u(x, 0) = x, 

(4.1 aII) u(0, t) = 0, 
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(4.1bl) (b) u(x 0) =x2 

and boundary condition (4.1all), 

(4.1cl) (c) u(x, 0) = W 

and (4.1 all). 
These problems have the smooth solutions 

(4.1alII) (a) u(x, t) = x/(1 + t), 

(4.lbIII) (b) u(x, t) + 
= 

x t - 
+ 4xt 

2t2 

(4.1 clll) (c) u(x, t) = Vt 2 ?4x 
2 

respectively. The results, using the Eqs. (a), (b) and (c), are given in Tables 4.1(a, b, c), 
respectively. Backward difference versions of the explicit and implicit schemes were 
used to give values at the grid points on the upper boundary x = 1 (see [5], [11]). Ten 
grid points were used on [0, 1] so that h = 0.1. Errors at a central grid point, after 
300 time steps, are given in the tables for a series of values of a and d and for a selec- 
tion of values of p. 

The maximum value of the solution in experiment (a) is 1, and this occurs at 
t = 0 with the solution decreasing with increasing time. Thus, optimal stability occurs 
for p = 1. From Theorem 3.5 and remarks following it, optimal stability should occur 
only for - 1/2 < ad S ?2. The results in Table 4.1(a(i)) indicate that the scheme is stable 
over a larger range of positive ad. It is to be noted, however, that the solution does 
decrease with increasing time and hence the local optimal stability condition is not p = 

I as time increases. 
Similar remarks apply to Tables 4.1(b, c(i)). Also, from a comparison of Tables 

4.1(i) and (ii) in all cases (a), (b) and (c), it is observed that instability occurs for a 
larger range of ad when p = 1.0, than when p = 0.5 as would be expected from the re- 
sults of the computer search. Notice also, in all cases (a), (b) and (c), the extremely 
small truncation errors. A truncation error analysis would give best values of a and d 
for minimizing truncation errors. 

In the second set of numerical experiments, the discontinuous initial values 

(4.1dl) u(x, 0) .1, 

0 x > . 
and boundary condition 
(4.1dII) u(0, t) = 1 (t > 0) 
were used. In this case, (4.1) has the discontinuous solution in which the discontinuity 
of (4.ldI) is propagated into the field of solution along the line x = 0.1 + 0.5t. In 
Figure 4.1, the solutions obtained are graphed for a series of values of a, d and p. In 
all cases, a mesh spacing of 0.01 was used. In each part of Figure 4.1, the graphs of the 
solution are given after 50 time steps. The solution is graphed from x = 0.5 x 50 x 
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TABLE 4.1 

Errors are multiplied by 106. 

p d .125 .25 .5 1.0 2.0 4.0 
.25 -1 -0 1 2 4 8 

05 .5 - 4 - 2 0 4 7 13 G 
1.0 -46 -2 2 6 1 1 40 
2.0 - 7 0 4 5 444 1515 (a) 

.25 -4 -3 -2 1 5 9 

.5 -4 -4 -2 4 11 17 
1.0 (i 

1.0 -2 -3 3 12 17 * 

2.0 0 0 6 9 194 
.25 - 312 - 278 - 212 - 87 149 597 
.5 - 528 - 496 - 432 - 309 - 80 361 

0.5 
1.0 - 595 - 569 - 518 -416 - 222 140 
2.0 - 604 - 590 - 564 - 532 - 2321 20945 

.25 -216 - 185 - 131 -41 121 437 (b) 

1.0 .5 -462 -399 -312 -209 -54 266 (ii) 

1.0 - 572 - 472 - 371 - 293 -159 110 
2.0 - 538 - 458 - 410 - 371 -587 * 

.25 -6 -45 - 113 -222 -370 -537 

0 5 .5 413 241 217 29 -208 -445 
1.0 754 657 495 252 -48 -279 (0) 

2.0 980 876 703 443 1185 -682 

.25 14 -1 - 26 -61 - 104 -148 (c) 

1.0 .5 190 157 104 33 -45 -113 (ii) 
1.0 355 307 235 137 31 -45 
2.0 471 421 346 239 432 

* denotes nonlinear instability had occurred. 

p x h to x = 0.5 x 50 x p x h + 0.15, that is from 10 grid points before the theoret- 

ical shock position to 5 grid points after it. In each separate set of graphs, the last 
graph given for a particular value of a was the last one in the set of d = 0.125, 0.25, 
0.5, 1.0, 2.0 which did not give instability. The shock position in most cases was with- 
in 2 grid points of the theoretical position. In Table 4.1(a(ii), (iii), (iv)) and 4.lb(ii) 
and (iii), the last graph indicates that instability has almost set into the method com- 
pletely upsetting its ability to obtain the correct profile or shock speed. In all these 
graphs, reasonable profiles are obtained provided one works with values of a and d 
which are fairly large, and about the same size, say a = d = 0.5. 
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FIGURE 4.1 

(a) p 0x95 

(i) a = 05 

1d = 012 d 0.25\ d = 0.5 d = 1.0 

(ii) a 1.0 

1~~~ 

d =0125 d = 0*25 d 0 Sd 10J 

- (iii) a = 20 (iv) a 4.0 

-d 0.~25 d = 0*25 d =05 d 0*125 d= 0*25 

L 

From these results, it is desirable to work with a value of p close to the stability 
limit and to choose ad inside the range predicted by Theorem 4.5. Further, in the ab- 
sence of any other criteria, one could choose ad so as to satisfy the stability criteria of 
the implicit scheme itself, namely (3.6), and a so as to centralise the scheme, that is 
take a around 0.5. 
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FIGURE 4.1 (continued) 
(b) p = 0.5 

(i) a 1.0 

1 

-d= 0.125 d 0*25 d 0.5 d = 1-0 d 2-0 

(ii) a 420 

1 

d 12 d l 02 d =0.5S d =1.*0 d =2 *0 

(iii) a = 4.0 

Xd=0125 d 0*25 d 0= 5 d - 1.0 

These results simply represent a preliminary study of this type of explicit-implicit 

method. Applications to more complicated equations and systems arising from physi- 

cal problems will be carried out in the near future. 

5. Extension of Explicit-Implicit Schemes to Two Space Dimensions. In this sec- 

tion, the extension of the explicit-implicit ideas of Section 2 are carried through to 
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problems involving two space dimensions. We consider the system of conservation laws 

(5.1) au/at + af(u)/ax + ag(u)Iay = 0 

in a region R x (0, oo) where R is a bounded region of (x, y)-space. Appropriate initial 
and boundary conditions are asumed given. 

A grid of spacing h and a time step k is placed on R and the time axis, respec- 

tively. w7 denotes an approximation to u(ih, jh, mk). 
In a manner analogous to that in Richtmyer's paper [3], the explicit and implicit 

schemes can be extended to solve (5.1) (see [5], [11]). We denote by 

(5.2) wT'l =R Wi1. 
the two-dimensional analogue of the explicit scheme and by 

(5.3) R01W7 + 1 = R W. 
the two-dimensional analogue of the implicit scheme. The operators Re, R01, R1I are 

nonlinear operators. ROIwi1 + 1 involves values of wm + 1 at (i, j), (i ? 1, j), (i, ? 1). 

We now consider different combinations of the schemes (5.2), (5.3) in a similar 

way to that described for parabolic problems in Gourlay and McGuire [14] and McGuire 

[15]. An Odd-Even explicit-implicit method (see [14]) may be defined by the following 

strategy: 
use (5.2) at those points with m + i + j odd, 

(5.4) and use (5.3) at the points with m + i + j even. 

This method used progressively from time level to time level is easily seen to be com- 

pletely explicit. For, after appliction of (5.2) at all points on time level m + 1 with 

m + i +j odd, the only unknown in the expression R w ' + 1 when (5.3) is applied at 

the points with m + i + ? even, is in fact w1.+ 
In a similar way, a line explicit-implicit method may be defined by the procedure: 

(5.5) 
use (5.2) at those points with m + i odd, 

(5.5) and use (5.3) at those with m + i even. 

This method is not completely explicit, and requires the solution of a nonlinear block 
tridiagonal system on alternate i grid lines at each time level. Methods similar to those 
for implementing the implicit schemes in one space dimension (see [11]) are required 
to solve these systems. 

Also an alternating direction explicit-implicit method may be defined by the al- 

gorithm: 
on odd time levels, use (5.2) at points with m + i even 
and then use (5.3) at points with m + i odd; 

(5.6) on even time levels use (5.2) at points with m + j even 
and then (5.3) at points with m + j odd. 

This method is seen to be partially implicit requiring the solution of a nonlinear block 

tridiagonal system on alternate i grid lines for odd time levels and the solution of a 
nonlinear block tridiagonal system on alternate j grid lines for even time levels. 

Other combinations are possible. The analysis of the stability properties of the 
methods like (5.4), (5.5), (5.6) is complicated. Each of the methods, when linearized, 



NUMERICAL SOLUTION OF NONLINEAR HYPERBOLIC SYSTEMS 423 

can be reduced to a three-level method on explicit node points only. The amplifica- 
tion matrix can then be investigated in the same way as for the one-space dininsional case. 

The explicit-implicit schemes of Section 2 can also be extended using Strang's for- 
mulations [21], [22] or the formulation in McGuire and Morris [23]. However, the in- 
vestigation of the linearized stability properties of the resulting methods is difficult since 
each one space dimensional operator is a three-level operator and thus the usual tech- 
nique (see [21], [22]) of finding the amplification matrix cannot be applied directly. 

No experiments have been carried out with any of the above methods as yet; it is 
hoped to conduct investigations of this type in the near future. 
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